Goto

Collaborating Authors

 Syria



DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development, by enabling automation. In software engineering, LLM-powered coding agents have garnered significant attention due to their potential to automate complex development tasks, assist in debugging, and enhance productivity. However, existing approaches often struggle with sub-optimal decision-making, requiring either extensive manual intervention or inefficient compute scaling strategies. To improve coding agent performance, we present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents, that is faster and more effective at recovering from sub-optimal decisions compared to baselines. While traditional agents either follow linear trajectories or rely on random sampling for scaling compute, our approach DARS works by branching out a trajectory at certain key decision points by taking an alternative action given the history of the trajectory and execution feedback of the previous attempt from that point. We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2. Our framework achieves a pass@1 rate of 47%, outperforming state-of-the-art (SOTA) open-source frameworks.


ExtremeAIGC: Benchmarking LMM Vulnerability to AI-Generated Extremist Content

arXiv.org Artificial Intelligence

Large Multimodal Models (LMMs) are increasingly vulnerable to AI-generated extremist content, including photorealistic images and text, which can be used to bypass safety mechanisms and generate harmful outputs. However, existing datasets for evaluating LMM robustness offer limited exploration of extremist content, often lacking AI-generated images, diverse image generation models, and comprehensive coverage of historical events, which hinders a complete assessment of model vulnerabilities. To fill this gap, we introduce ExtremeAIGC, a benchmark dataset and evaluation framework designed to assess LMM vulnerabilities against such content. ExtremeAIGC simulates real-world events and malicious use cases by curating diverse text- and image-based examples crafted using state-of-the-art image generation techniques. Our study reveals alarming weaknesses in LMMs, demonstrating that even cutting-edge safety measures fail to prevent the generation of extremist material. We systematically quantify the success rates of various attack strategies, exposing critical gaps in current defenses and emphasizing the need for more robust mitigation strategies.


GIMMICK -- Globally Inclusive Multimodal Multitask Cultural Knowledge Benchmarking

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) have recently gained attention due to their distinctive performance and broad applicability. While it has been previously shown that their efficacy in usage scenarios involving non-Western contexts falls short, existing studies are limited in scope, covering just a narrow range of cultures, focusing exclusively on a small number of cultural aspects, or evaluating a limited selection of models on a single task only. Towards globally inclusive LVLM research, we introduce GIMMICK, an extensive multimodal benchmark designed to assess a broad spectrum of cultural knowledge across 144 countries representing six global macro-regions. GIMMICK comprises six tasks built upon three new datasets that span 728 unique cultural events or facets on which we evaluated 20 LVLMs and 11 LLMs, including five proprietary and 26 open-weight models of all sizes. We systematically examine (1) regional cultural biases, (2) the influence of model size, (3) input modalities, and (4) external cues. Our analyses reveal strong biases toward Western cultures across models and tasks and highlight strong correlations between model size and performance, as well as the effectiveness of multimodal input and external geographic cues. We further find that models have more knowledge of tangible than intangible aspects (e.g., food vs. rituals) and that they excel in recognizing broad cultural origins but struggle with a more nuanced understanding.


Reinforcement Learning in Newcomblike Problems

Neural Information Processing Systems

Newcomblike decision problems have been studied extensively in the decision theory literature, but they have so far been largely absent in the reinforcement learning literature. In this paper we study value-based reinforcement learning algorithms in the Newcomblike setting, and answer some of the fundamental theoretical questions about the behaviour of such algorithms in these environments. We show that a value-based reinforcement learning agent cannot converge to a policy that is not ratifiable, i.e., does not only choose actions that are optimal given that policy. This gives us a powerful tool for reasoning about the limit behaviour of agents - for example, it lets us show that there are Newcomblike environments in which a reinforcement learning agent cannot converge to any optimal policy. We show that a ratifiable policy always exists in our setting, but that there are cases in which a reinforcement learning agent normally cannot converge to it (and hence cannot converge at all). We also prove several results about the possible limit behaviours of agents in cases where they do not converge to any policy.


Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations

arXiv.org Artificial Intelligence

Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.


Drone footage shows destruction of Zabadani from Syria's war

Al Jazeera

Exclusive drone footage reveals the extensive destruction in Zabadani, a city near Damascus, which endured heavy shelling from Bashar al-Assad's forces during Syria's war.


Navigating Dialectal Bias and Ethical Complexities in Levantine Arabic Hate Speech Detection

arXiv.org Artificial Intelligence

Social media platforms have become central to global communication, yet they also facilitate the spread of hate speech. For underrepresented dialects like Levantine Arabic, detecting hate speech presents unique cultural, ethical, and linguistic challenges. This paper explores the complex sociopolitical and linguistic landscape of Levantine Arabic and critically examines the limitations of current datasets used in hate speech detection. We highlight the scarcity of publicly available, diverse datasets and analyze the consequences of dialectal bias within existing resources. By emphasizing the need for culturally and contextually informed natural language processing (NLP) tools, we advocate for a more nuanced and inclusive approach to hate speech detection in the Arab world.


The Use of Artificial Intelligence in Military Intelligence: An Experimental Investigation of Added Value in the Analysis Process

arXiv.org Artificial Intelligence

It is beyond dispute that the potential benefits of artificial intelligence (AI) in military intelligence are considerable. Nevertheless, it remains uncertain precisely how AI can enhance the analysis of military data. The aim of this study is to address this issue. To this end, the AI demonstrator deepCOM was developed in collaboration with the start-up Aleph Alpha. The AI functions include text search, automatic text summarization and Named Entity Recognition (NER). These are evaluated for their added value in military analysis. It is demonstrated that under time pressure, the utilization of AI functions results in assessments clearly superior to that of the control group. Nevertheless, despite the demonstrably superior analysis outcome in the experimental group, no increase in confidence in the accuracy of their own analyses was observed. Finally, the paper identifies the limitations of employing AI in military intelligence, particularly in the context of analyzing ambiguous and contradictory information.


Developing an Effective Training Dataset to Enhance the Performance of AI-based Speaker Separation Systems

arXiv.org Artificial Intelligence

This paper addresses the challenge of speaker separation, which remains an active research topic despite the promising results achieved in recent years. These results, however, often degrade in real recording conditions due to the presence of noise, echo, and other interferences. This is because neural models are typically trained on synthetic datasets consisting of mixed audio signals and their corresponding ground truths, which are generated using computer software and do not fully represent the complexities of real-world recording scenarios. The lack of realistic training sets for speaker separation remains a major hurdle, as obtaining individual sounds from mixed audio signals is a nontrivial task. To address this issue, we propose a novel method for constructing a realistic training set that includes mixture signals and corresponding ground truths for each speaker. We evaluate this dataset on a deep learning model and compare it to a synthetic dataset. We got a 1.65 dB improvement in Scale Invariant Signal to Distortion Ratio (SI-SDR) for speaker separation accuracy in realistic mixing. Our findings highlight the potential of realistic training sets for enhancing the performance of speaker separation models in real-world scenarios.